

<section-header><section-header>

Approach

1. Data Collection & Monitoring

- Video Monitoring Hydraulics and Fish Movement
- Stage Observations throughout Channel
- 2. Numerical Model of Existing Channel Hydarulics
 - Calibrated 2-D Finite Difference Model
 - Simulations for Various Tidal and Flow Conditions
- 3. Evaluate Passage Using Energetics & Locomotion Model
 - Route Fish through Channel at Migration Flows
 - Conduct multiple simulations to describe variation in fish size and swimming abilities
 - Locate Exhaustion Barriers
- 4. Develop and Evaluate Resting Pool Alternatives
 - Effectiveness of pool shapes to provide resting areas.
 - Assess Spacing verses Passage Rate for New Pools

Fish Routing Model

Modes of Swimming:

- Sustained Swimming Completely aerobic activity and can be maintained indefinitely.
- Prolonged Swimming Combination of aerobic and anaerobic metabolic activity, maintained between 20 seconds and 60 minutes before fatigue.
- Burst Swimming Fastest swimming mode uses anaerobic muscles almost exclusively and only maintainable between 1 and 20 seconds before fatigue.

(Beamish, 1978).

Fish Passage Model Approach

For Each Flow and Tidal Condition:

- 1. Route fish through channel based on 2-D results
 - > Determine velocities and depths along route
- 2. Stochastic simulations of swimming along route
 - Randomly select fish length and swim speed from distributions
 - > Conduct ~1,000 simulations.
 - Estimate proportion of Steelhead able to ascend concrete channel.

Existing Fish Passage Conditions

	Percent of Steelhead able to Ascend Unit 3						
Tide/Flow	14 cfs	23 cfs	40 cfs	77 cfs	113 cfs	177 cfs	
MLLW	7	2	2	2	2	1	
MTL	98	85	51	13	7	1	
мннw	99	92	97	73	54	4	

MLLW Mean Lower Low Water (Low Tide) MTL Mean Tide Level

MHHW Mean Higher High Water (High Tide)

Criteria for New Resting Pools

Objectives:

- Improve steelhead passage efficiency at all migration flows and tidal conditions
- Minimize risk of sedimentation
- Minimize impact on channel capacity

Resting Habitat Criteria:

- Water Velocities < 1 BL/s at passage flows
- Water Depth > 2 ft deep (provides cover)
- Minimum Resting Area is:
 2 ft wide x 2 ft long x 2 ft deep

	Percent of Steelhead able to Ascend Unit 3 at MLLW								
FLOW	Existing Pools	300 ft Spacing	200 ft Spacing	150 ft Spacing	100 ft Spacing				
77 cfs	2	40	65	78	87				
177 cfs	1	25	53	65	74				

Passage Success for 150 ft Spacing							
	Percent of Steelhead able to Ascend Unit 3						
Tide	14 cfs	23 cfs	40 cfs	77 cfs	113 cfs	,, 177 cfs	
MLLW	95 (7)	85 (2)	81 (2)	78 (2)	74 (2)	65 (1)	
MTL	98 (98)	86 (85)	81 (51)	79 (13)	75 (7)	64 (1)	
MHHW	99 (99)	95 (92)	98 (97)	86 (73)	80 (54)	64 (4)	

Conculsions

- Resolution provided by 2-D hydraulics simulations better describes hydraulic environment experienced by the fish.
- Evaluating passage performance for the entire fish population more accurately describes passage conditions and impacts to fisheries
- For exhaustion barriers, providing suitable resting pools can greatly improve passage success.